Содержание

1 Алгоритм расчета мощности электродвигателя	4
2 Номинальные режимы работы электродвигателей	11
3 Критерии и методы расчета мощности двигателя	13
3.1 Расчет мощности двигателя по нагреву	13
3.2 Проверка двигателя по перегрузочной способности	18
3.3 Проверка двигателя по условиям пуска	19
3.4 Выбор мощности двигателя в зависимости от температуры	
окружающей среды	19
4 Расчет мощности и предварительный выбор двигателя для	
различных режимов работы	21
4.1 Расчет и выбор мощности двигателя для длительного режима	
работы	21
4.2 Предварительный расчет мощности двигателя для повторно-	
кратковременного режима работы	21
4.3 Определение допустимого числа включений (рабочих циклов) в	3
час	23
4.4 Предварительный выбор двигателя для кратковременного	
режима работы	24
5 Расчет мощности двигателя махового электропривода	26
5.1 Расчет мощности двигателя махового электропривода при	
пульсирующей нагрузке	26
5.2 Расчет мощности двигателя махового электропривода при	
прямоугольном графике нагрузки, состоящем из двух участков	28
6 Особенность расчета мощности следящего привода	30
7 Выбор электродвигателей по роду тока, климатическому	
исполнению, специальным требованиям рабочих машин	31
7.1 Выбор электродвигателей по роду тока	31
7.2 Выбор электродвигателей по конструктивному	32
исполнению	
7.3 Выбор серий электродвигателей и их модификаций	36
8 Окончательная проверка двигателя по нагреву	46
Список литературы	47
* * * *	

1 Алгоритм расчета мощности электродвигателя

Алгоритм расчета силового электропривода (электродвигателя) рабочего механизма приведен на рисунке 1.1. Дадим к нему краткие комментарии.

На первом этапе проектирования уточняется постановка задачи, разрабатывается механическая часть привода, выбирается и обосновывается тип двигателя (привода), способ регулирования координат, уточняется нагрузочная диаграмма механизма (операторы 1 - 5).

Операторы 6,7,9,10 позволяют определить режим работы двигателя, метод расчета двигателя по нагреву и выбрать наиболее подходящий номинальный режим работы. Дополнительный оператор 8 определяет необходимость применения маховикового электропривода. использование двигателя имеет место, если для данного режима работы выбирается наиболее подходящий номинальный режим, например, для длительного режима – двигатель режима S1, для кратковременного – S2, для повторно-кратковременного - S3 и т.д. Исходя из данного положения, предлагается универсальный подход предварительного расчета двигателя по нагреву - использование метода эквивалентного момента (операторы 11,12,13). В других случаях необходимо дополнительно вести пересчет мощности двигателя, например, по методике, изложенной в [I]. Известно, что задача расчета мощности двигателя не может быть решена однозначно (за исключением случая длительного режима с постоянной нагрузкой на валу -оператор 27) и предполагает дальнейшее уточнение выбранного двигателя после расчета переходных процессов в электроприводе за цикл работы, а также построения уточненной нагрузочной диаграммы двигателя (операторы 31-34). Безусловно, что метод проверки по нагреву двигателя - оператор 34 может не совпадать с методом, принятым для предварительного расчета (операторы 11 -13), и требует дополнительного обоснования. На практике чаще всего для проверки двигателя по нагреву используется метод эквивалентного тока, а в отдельных случаях - метод средних потерь, значительно реже - метод эквивалентного момента.

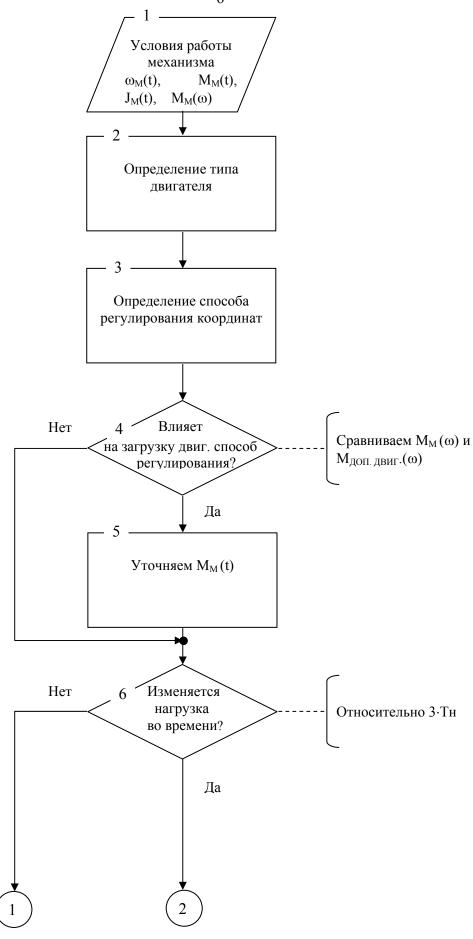
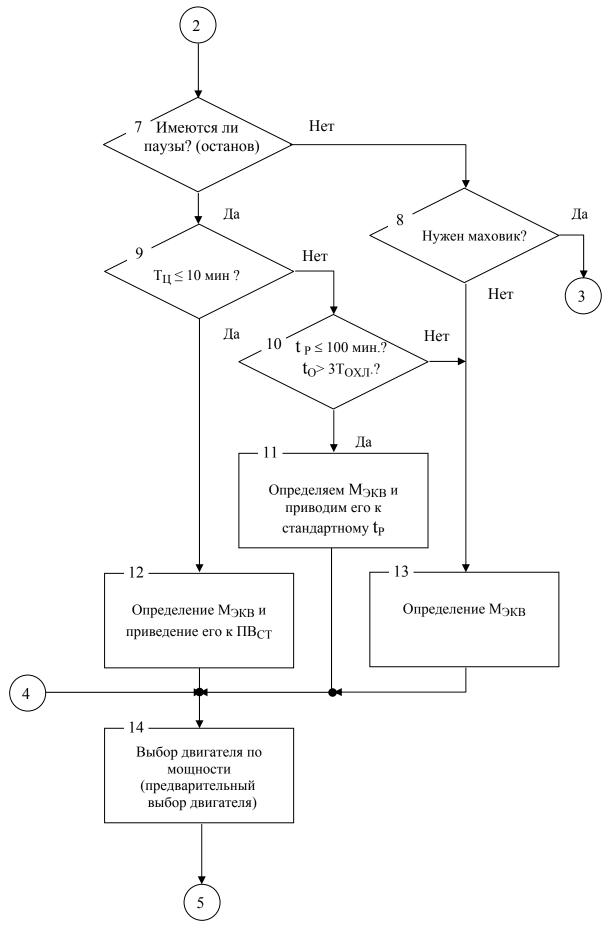
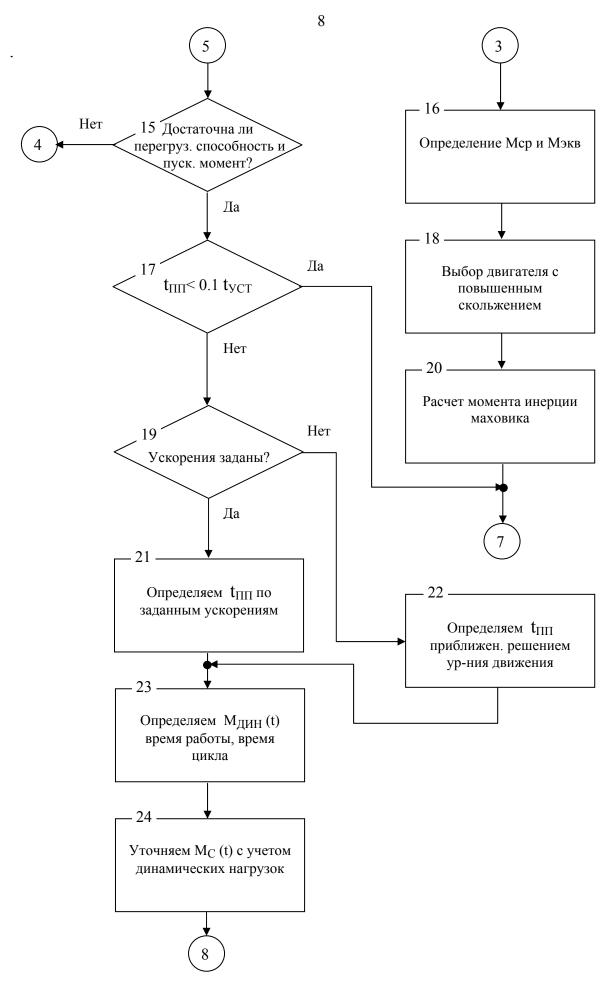
При выборе двигателя по мощности на всех этапах проектирования следует особое внимание уделять требованиям энергосбережения [8]. Можно наметить следующие пути энергосбережения собственно в электроприводе и в технологической сфере средствами электропривода:

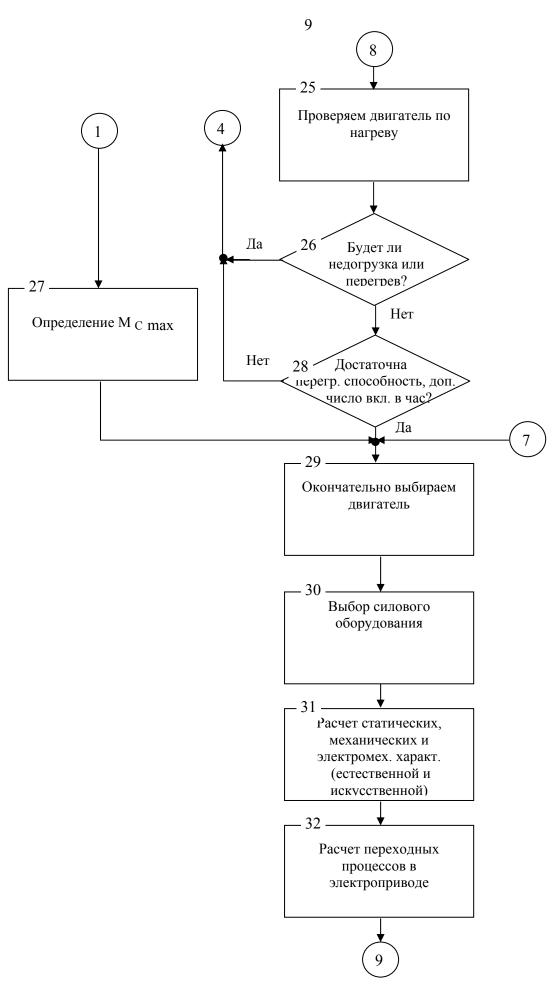
1-й путь. Правильный выбор двигателя по мощности. Перегрузка и недогрузка электрических машин одинаково нежелательны: первая — снижает срок службы (приблизительно в два раза на каждые $10\,^{0}$ С перегрева изоляции выше допустимой); вторая — снижает КПД. Поэтому при окончательном выборе двигателя следует руководствоваться следующим правилом: если разница номинальной и расчётной мощностей больше, чем разница мощностей выбранного двигателя и ближайшего (по каталогу), имеющего меньшую мощность, следует повторить этапы проверки (начиная с оператора

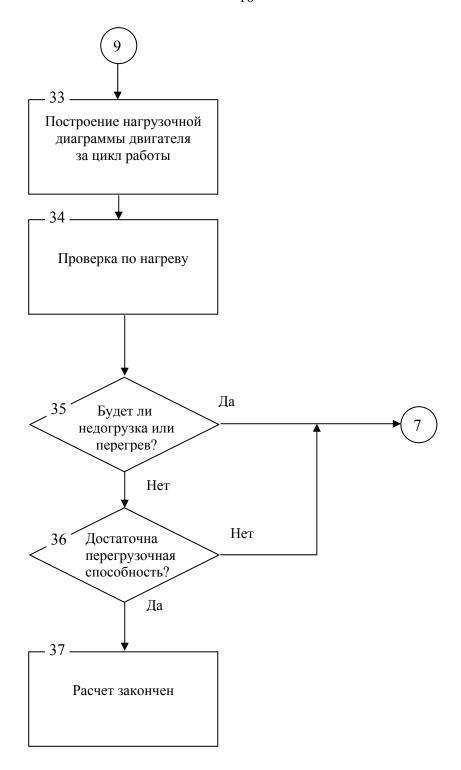
- 29) с двигателем меньшей мощности. Если при проверке номинальная мощность оказалась меньше расчётной, следует перейти к двигателю с ближайшей большей мощностью и повторить расчёты, начиная с оператора 29. Чаще всего на практике считается удовлетворительным результат, когда выбранный двигатель загружен не менее, чем на 70% его номинальной мощности.
- 2-й путь. Повышение экономичности массового нерегулируемого электропривода использование двигателей с улучшенными значениями коэффициента мощности и КПД. Здесь имеется в виду не только применение двигателей самых новых серий, но и правильный выбор их модификаций в зависимости от свойств рабочей машины, параметров нагрузки (например, использование АД с повышенным скольжением для уменьшения времени переходных процессов и потерь энергии в переходных процессах, в маховиковых приводах и нежелательное их использование при «спокойных» нагрузках, редких пусках и т.п.).
- 3-й путь. Специальные технические средства, обеспечивающие загрузку двигателя до номинальной при колебании нагрузки на валу (длительная работа с недогрузкой) это, например, переключение АД с треугольника на звезду в приводе эскалатора; «расщепление» мощности применение 2-х двигателей половинной мощности; специальные регуляторы и т.д.

4-й путь. Переход от нерегулируемого ЭП к регулируемому — это и экономия энергии в самом ЭП, и, что особенно важно, выбор наилучшего с точки зрения энергетики, технологического режима работы (оптимальные скорости резания, оптимальные графики движения и т.д.).

Другие значения операторов алгоритма расчета видны из кратких комментариев, приведенных на рисунке 1.1. В заключении отметим, что строгое руководство данным алгоритмом расчета вовсе не предполагает однократный расчет, но, во-первых, позволяет малоопытному проектировщику избежать принципиальных ошибок, во-вторых, ускоряет, даже в случае многократных расчетов, выбор наиболее рационального электропривода.


Рисунок 1.1 – Алгоритм расчета силового электропривода


Продолжение рисунка 1.1

Продолжение рисунка 1.1

Продолжение рисунка 1.1

Окончание рисунка 1.1

2 Номинальные режимы работы электродвигателей

Под номинальным режимом работы электродвигателя понимается режим, для которого он спроектирован и изготовлен предприятием-изготовителем. Для этого режима в каталогах и паспорте электродвигателя указываются номинальные (паспортные) значения: полезная мощность на валу, напряжения и токи, частота вращения, КПД, коэффициент мощности, перегрузочная способность. В соответствии с ГОСТ 183-74 установлено восемь номинальных режимов, которые имеют условные обозначения S1-S8 [1]. Чаще всего выпускаются машины номинальных режимов S1, S3, реже - S2, S8. Основные характеристики номинальных режимов приведены в таблице 2.1, в которой указаны следующие нормированные величины:

$$\Pi B = \frac{T_{II} - t_{O}}{T_{II}} \cdot 100$$
 %- продолжительность включения;

$$\Pi H = \frac{T_{\rm II} - t_{\rm XX}}{T_{\rm II}} \cdot 100\,\%\text{- продолжительность нагрузки};$$

Z-число включений (циклов) в час;

$$FI = (J_{AB} + J_{MEX}) / J_{AB};$$

 $T_{II},\,t_{O},\,t_{XX}$ - соответственно, время цикла, останова (паузы) и холостого хода, мин;

 $J_{\text{ДВ}},\,J_{\text{МЕХ}}-$ соответственно, момент инерции двигателя и механизма, приведенного к валу двигателя, кг·м 2 .

Таблица 2.1 – Характеристики номинальных режимов электрических машин по ГОСТ 183-74

Усл.	Номинальный		Нормируемые значения				
обозн.	режим работы	Tц,	ПВ,	ПН,	t _P ,	Z	FI
		мин.	%	%	мин.		
1	2	3	4	5	6	7	8
S1	Продолжительный	-	-	-	-	-	-
S2	Кратковременный	-	-	-	15,30,	-	-
					60, 90		
S3	Повторно-	10,0	15, 25,	-	-	6,0	-
	кратковременный		40, 60				
S4	Повторно-кратко-	60	15, 25,	-	-	30, 60,	1,2; 1,6;
	временный с	\overline{z}	40, 60			120, 240	2,0; 2,5;
	«тяжелым» пуском						4,0; 6,3;
	(торможение						10,0
	механическое)						

Окончание таблицы 2.1

1	2	3	4	5	6	7	8
S5	Повторно-кратко- временный с «тяже- лыми» пусками и электрическим		15, 25, 40, 60	-	-	30, 60, 120, 240	1,2; 1,6; 2,0; 2,5; 4,0
S6	торможением Перемежающийся (длительный с чередованием постоянной нагрузки и холостого хода)	10,0	-	15, 25, 40, 60	-	-	-
S7	Перемежающийся с частыми реверсами при электрическом торможении	$\frac{60}{Z}$	-	-	-	30, 60, 120, 240	1,2; 1,6; 2,0; 2,5; 4,0
S8	Перемежающийся с двумя и более частотами вращения (продолжительность нагрузки ПНі; число циклов в час Zi для каждой скорости)	-	-	Соглас. с заказ- чиком	-	30, 60, 120, 240	1,2; 1,6; 2,0; 2,5; 4,0

Примеры условного обозначения режимов работы представлены в таблице 2.2

Таблица 2.2 – Условное обозначение режима работы

	Об
Номинальный режим работы	Обозначение режима работы
1	2
Продолжительный	S1 или опускается
Кратковременный	S2- 30 мин; S2-60 мин
Повторно-кратковременный	S3-25%; S3-40%
Повторно-кратко-временный	S4-25%, 120 включений в час, FI-2,0
с «тяжелым» пуском	
(торможение механическое)	
Повторно-кратко-временный	S5-40%, 60 включений в час, FI-1,2
с «тяже-лыми» пусками и	, ,
электрическим торможением	
Перемежающийся (длитель-	S6-40%
ный с чередованием посто-	
янной нагрузки и холостого	
хода)	
Перемежающийся с частыми	S7-120 включений в час, FI-2,5
реверсами при электричес-	, ,
ком торможении	
ком торможении	

Окончание таблицы 2.2

1	2
Перемежающийся с двумя	S8-60 включений в час, FI-2,0;
и более частотами	22 кВт; 740 об/мин; 40%;
вращения (продолжитель-	55 кВт; 1470 об/мин; 60%
ность нагрузки ПНі;	
число циклов в час Zi для	
каждой скорости)	

3 Критерии и методы расчета мощности двигателя

Определяющим при выборе мощности двигателя являются нагрев его обмоток и мгновенные перегрузки.

Кроме того, номинальная скорость двигателя должна соответствовать выбранному способу регулирования, условиям технологического режима и учитывать требования механической части привода [1], а его конструктивное исполнение должно соответствовать удобству сопряжения с рабочей машиной и условиям окружающей среды.

3.1 Расчет мощности двигателя по нагреву

В сущности расчет мощности двигателя по нагреву должен производится путем определения наибольшей температуры перегрева его изоляции τ_{max} и сравнение ее с допустимой $\tau_{ДО\Pi}$:

$$\tau_{\text{ДОП}} \ge \tau_{\text{max}},$$
(3.1)

где $\tau = \theta - \theta_{\rm OXJ}$; θ -температура нагрева обмоток, $^{\rm O}$ C; $\theta_{\rm OXJ}$ -температура окружающей среды (по ГОСТ 8865-87 принято унифицированное значение, равное 40 $^{\rm O}$ C).

Предельно допустимые температуры электроизоляционных материалов приведены в таблице 3.1. В настоящее время в электродвигателях в основном применяются изоляционные материалы классов В и F, реже E и H.

Таблица 3.1 – Нагревостойкость электроизоляционных материалов

Класс	A	Е	В	F	Н
нагревостойкости					
Температура	105	120	130	155	180
$\theta_{\text{ДО\Pi}}$, ${}^{\text{O}}$ C					

Предельно допустимая температура частей электрических машин принимается несколько меньше, чем допустимая температура изоляционных материалов данного класса нагревостойкости (таблица 3.2). устанавливается в связи с тем, что методы расчета, измерения или контроля температуры частей электрических машин позволяют либо зафиксировать температуру их отдельных нескольких точек (метод температурных индикаторов), либо определить среднюю температуру ее обмотки или части обмотки (метод сопротивления). Поэтому, используемые в дальнейших расчетах значения $\theta_{\Pi\Pi\Pi}$, следует определять как сумму допустимого превышения температуры обмоток, взятую из таблицы 3.3, и температуры окружающей среды 40 °C. Эти нормы обязательны для машин общего назначения. Для специальных машин они могут быть изменены в зависимости от ряда условий, например, сокращенного расчетного срока службы, повышенных требований к надежности и т. оговариваются в технических условиях или ГОСТах на машины данного типа.

Этот метод для практических расчетов либо затруднен (сложность построения кривой нагрева двигателя), либо вообще невозможен (предварительный выбор двигателя).

Поэтому на практике обычно применяют, считая его относительно точным, метод средних потерь. В этом методе в качестве мерила нагрева принимаются средние потери энергии или средняя мощность потерь за цикл работы:

$$\Delta P_{H} \ge \Delta P_{CP} = \frac{\sum_{i=1}^{n} \Delta P_{i} \cdot \Delta t_{i}}{T_{II}},$$
(3.2)

где n – число участков нагрузочной диаграммы, на которых можно определить постоянную нагрузку – мощность на валу P_i в течение времени Δt_i ;

 $T_{\text{Ц}}$ – время полного цикла, c;

 ΔP_H , ΔP_i — соответственно, номинальные потери мощности двигателя и потери на i — том участке, которые определяются по выражениям:

$$\begin{split} \Delta P_{H} &= P_{H} \cdot (1 - \eta_{H}) / \eta_{H}; \\ \Delta P_{i} &= P_{i} \cdot (1 - \eta_{i}) / \eta_{i}. \end{split} \tag{3.3}$$

Таблица 3.2 — Предельно допустимые превышения температуры обмоток $\tau_{\text{ДОП}}$ электрических машин при температуре газообразной охлаждающей среды 40 $^{\circ}$ C и высоте над уровнем моря не более 1000 м при измерении методом сопротивлений (методом термометра отмечены знаком *)

Обмотки электрических машин	Изоляционный материал класса нагревостойкости				
	A	Е	В	F	Н
	Пр	едельно допусти	мые превышения	температур, $ au_{ extit{JOI}}$	I, ^O C
Обмотки переменного тока машин $P_H \ge 5000 \mathrm{kBT}$	60	75	80	100	125
Обмотки переменного тока машин P_H <5000кВт	60	75	80	100	125
Якорные обмотки, соединенные с коллектором	60	75	80	100	125
Изолированные обмотки, непрерывно замкнутые на себя	60*	75*	80*	100*	125*
Обмотки возбуждения машин постоянного и переменного тока (кроме указанных в п. 6, 7 настоящей таблицы)	60	75	90	100	125
Обмотки возбуждения неявнополюсных машин с возбуждением постоянным током	-	-	80	100	132
Обмотки возбуждения малого сопротивления, имеющие несколько слоев и компенсационные обмотки	60	75		100	125

Очевидно, для определения ΔP_i следует для проверяемого по нагреву двигателя иметь зависимость его КПД от нагрузки на валу (η =f(M_C) [9]. Следует отметить, что метод средних потерь позволяет оценить тепловой режим работы двигателя по среднему превышению температуры τ_{CP} . В этом заключается определённая погрешность метода поскольку максимальный перегрев τ_{max} (см. (3.1)) на определённых участках цикла может превышать τ_{CP} . Эта погрешность тем меньше, чем больше постоянная нагрева двигателя T_H будет превышать значение $\Delta t_{i\ max}$ — наиболее продолжительного участка цикла; т.е. в случае $T_H >> \Delta t_{max}$ можно считать $\tau_{CP} \cong \tau_{max}$.

Формула (3.2) справедлива, если скорость вращения двигателя равна номинальной. Если скорость двигателя за цикл работы изменяется (t_{Π} – суммарное время пусков, t_{T} – суммарное время торможений; t_{O} – суммарное время пауз; $t_{P\omega}$ - время работы на пониженной скорости), то следует учесть ухудшение теплоотдачи двигателя. Тогда, в общем случае, метод средних потерь можно записать в виде:

$$\Delta P_{\rm H} \ge \Delta P_{\rm CP} = \frac{\sum\limits_{i=1}^{n} \Delta P_i \cdot \Delta t_i}{\beta_\Pi t_\Pi + \beta_T t_T + \beta_O t_O + \sum\limits_{j=1}^{m} \beta_{j\omega} \cdot t_{jP\omega}}, \tag{5.4}$$

где $\beta_{\Pi} = \beta_{T} = \frac{1+\beta_{O}}{2}$ - коэффициент ухудшения охлаждения при пусках, торможениях;

 β_0 — коэффициент ухудшения охлаждения при паузах (останов двигателя, ω =0), значение которого, в зависимости от вентиляции двигателя, указано в таблице 3.3.

Таблица 3.3 - 3начение коэффициента β_0

Исполнение двигателя	β_0
Закрытый с независимой	1.0
вентиляцией	
Закрытый без обдува	0.95 - 0.98
Закрытый обдуваемый, самовен-	0.35 - 0.55
тилируемый	
Защищенный самовентилируемый	0.25 - 0.35

$$eta_{j\omega} = rac{eta_0(D_j-1)+1}{D_j}$$
 - коэффициент ухудшения охлаждения при

работе двигателя со скоростью ω_j , равной ω_H/D_j , где D_j – диапазон регулирования в течение времени $t_{iP\omega}$.

Если скорость двигателя в установившемся режиме равна номинальной, $\beta_{j\omega}$ =1, тогда формула (3.4) для нерегулируемого электропривода примет вид:

$$\Delta P_{H} \ge \Delta P_{CP} = \frac{\sum_{i=1}^{n} \Delta P_{i} \cdot \Delta t_{i}}{\beta_{\Pi} \cdot t_{\Pi} + \beta_{T} \cdot t_{T} + \beta_{0} \cdot t_{0} + t_{P}}.$$
(3.5)

Если постоянные потери двигателя не изменяются за цикл работы, сопротивления силового контура якоря, статора двигателя остаются неизменными за цикл работы. Вместо метода средних потерь можно воспользоваться при оценке нагрева двигателя эквивалентным ему методом эквивалентного тока.

$$I_{H} \ge I_{\Im} = \sqrt{\frac{\sum_{i=0}^{n} I_{i}^{2} \cdot \Delta t_{i}}{\beta_{\Pi} \cdot t_{\Pi} + \beta_{T} \cdot t_{T} + \beta_{0} \cdot t_{0} + t_{P}}}.$$
 (3.6)

Метод эквивалентного тока более грубый, чем метод средних потерь (см. допущение), поэтому применение его должно быть обосновано. Например, этим методом нельзя проверять по нагреву асинхронный короткозамкнутый двигатель с глубоким пазом или двойной беличьей клеткой, сопротивление ротора которого сильно меняется в пусковых и тормозных режимах (нужно использовать в этом и в других подобных случаях метод средних потерь).

Оба рассмотренных метода можно использовать для проверки двигателя по нагреву, но ими нельзя воспользоваться для предварительного выбора двигателя. В этом случае целесообразно использовать метод эквивалентного момента, который является производным от метода эквивалентного тока и даёт удовлетворительные результаты в случае пропорциональности между током и моментом, причём коэффициент пропорциональности должен быть постоянным за весь цикл работы. Впрочем, если на каком-то участке цикла, ЭТОТ коэффициент пропорциональности изменяется и это заранее известно, то можно это учесть, изменяя условно нагрузку на валу двигателя в ту или иную сторону. Например, если на каком-то участке Δt_i с целью регулирования скорости ослабили поток двигателя постоянного тока независимого возбуждения в

 α раз при моменте нагрузки на валу M_i , то в случае, если механическая характеристика рабочей машины имеет вид M_C = const, на этом участке следует условно увеличить момент нагрузки в α раз (в формулу определения эквивалентного момента на участке Δt_i подставляем значение αM_i).

Выражение метода эквивалентного момента можно получить например, из формулы (3.6.)

$$M_{H} \ge M_{\Im} = \sqrt{\frac{\sum_{j=1}^{m} M_{j}^{2} \cdot \Delta t_{j}}{\beta_{\Pi} \cdot t_{\Pi} + \beta_{T} \cdot t_{T} + \beta_{0} \cdot t_{0} + t_{P}}}.$$
 (3.7)

Обычно метод эквивалентного момента используется для предварительных расчётов мощности, а проверку двигателя по нагреву осуществляют методом средних потерь или методом эквивалентного тока.

3.2 Проверка двигателя по перегрузочной способности

Проверка двигателя по перегрузочной способности обычно выполняется сразу после предварительного расчёта мощности по нагреву и выбора двигателя. При проверке исходят из условия:

$$M_{\rm JB \, max} \ge M_{\rm C \, max}$$
. (3.8)

При определении значения максимального момента двигателя $M_{\text{ДВ max}}$ следует учитывать как параметры естественной механической характеристики выбранного двигателя, так и условия его работы в момент приложения максимальной нагрузки $M_{\text{C max}}$. Например, для асинхронного двигателя обычно принимают:

$$M_{\text{ДB max}} = \mu_k \left(\frac{P_H}{\omega_H}\right) \cdot \left(\frac{U}{U_H}\right)^2,$$
 (3.9)

где $\,\mu_k,\, P_H,\, \omega_H,\, U_H$ – паспортные значения: кратность критического момента, мощность, скорость, напряжение питания, соответственно;

U — напряжение питания двигателя в момент преодоления $M_{C\ max}$ (например, на 10% меньше номинального, если иное не задано в задании на проектирование). Для двигателя постоянного тока независимого возбуждения

$$M_{\text{JB max}} = (K \cdot \Phi_{\text{H}}) I_{\text{SH}} (\Phi/\Phi_{\text{H}}), \qquad (3.10)$$

где $K \cdot \Phi_H$ или C_M – параметр естественной механической характеристики двигателя;

 $I_{\rm SH}$ – номинальный ток якоря;

 Φ_{H} – номинальный поток двигателя;

 Φ – значение ослабленного потока двигателя.

Если условие (3.7) не соблюдается, то либо предусматривают изменение характера нагрузки, либо выбирают двигатель, обладающий большей перегрузочной способностью, но прежней расчётной мощности, либо, если оба предыдущих варианта не дают положительного результата, приходиться завышать мощность двигателя (безусловно, это решение должно быть тщательно продумано, т.к. приводит к недогрузке двигателя, что нежелательно).

3.3. Проверка двигателя по условиям пуска

Проверка двигателя по условиям пуска также осуществляется после его предварительного расчёта и выбора по нагреву. Условие, которое здесь должно выполнятся, имеет вид:

$$M_{\text{ДВ ПУСК}} \ge M_{\text{С ТРОГ}},$$
 (3.11)

где $M_{\text{ДВ ПУСК}}$ – значение пускового момента двигателя (определяется по паспортным данным двигателя с учетом условий эксплуатации);

 $M_{C\ TPO\Gamma}$ — статический момент на валу двигателя во время пуска (здесь следует учитывать возможное увеличение нагрузки, обусловленное трением покоя).

Как правило невыполнение критерия (3.11) не предусматривает завышения мощности двигателя. В этом случае обычно применяют тот или иной способ пуска (например, реостатный для асинхронного двигателя с фазным ротором и двигателя постоянного тока; использование регулируемого электропривода).

3.4. Выбор мощности двигателя в зависимости от температуры окружающей среды

Согласно ГОСТ 8865-87 установлена унифицированная температура окружающей среды $\theta_{\rm OXJ}$ =40°C. Для установки двигателей в среде с температурой, отличной от 40°C, они могут быть нагружены больше или

меньше по отношению к номинальной мощности. Коэффициент загрузки по току можно принять равным:

$$\chi = \sqrt{\frac{\theta_{\text{ДО\Pi}} - \theta_{\text{ОХЛ}}}{\theta_{\text{ДО\Pi}} - 40^{0} \text{C}}} (\alpha + 1) - \alpha},$$
(3.12)

где $\theta_{\text{ДОП}}$ -определяем из таблицы 3.2, в зависимости от класса применяемой в двигателе изоляции;

 $\alpha = \frac{\Delta P_C}{\Delta P_{9HOM}} \text{- отношение постоянных потерь } \Delta P_C \text{ к переменным}$ потерям ΔP_{9HOM} при номинальной нагрузке.

Можно рекомендовать следующие значения α : для двигателей постоянного тока общепромышленных α =1,0-1,5; крановых - α =0,5-0,9; для двигателей асинхронных общепромышленных α =0,5-0,7; крановых - α =0,4-1,0. Например, для практических расчетов можно пользоваться приближенными значениями коэффициента загрузки двигателя χ , приведенными в таблице 3.4. Так, при использовании метода эквивалентного момента, следует: $M_H \ge M_{3KB}/\chi$.

Таблица 3.4 – Коэффициент загрузки двигателя χ

Температура окружающей среды, ^О С	20	25	35	40	45	50	55
Мощность дви-	1,25	1,125	1,05	1,0	0,95	0,875	0,75
гателя в долях номинальной P_H							

Заметим, что при температуре окружающей среды $\theta_{\rm OXJ} > (\theta_{\rm ДО\Pi} + \alpha \cdot 40~^{\rm O}{\rm C})/(~\alpha + 1)$ двигатель не может нести никакой нагрузки, даже работать на холостом ходу.

4 Расчет мощности и предварительный выбор двигателя для различных режимов работы

4.1 Расчет и выбор мощности двигателя для длительного режима работы

Рассмотрим порядок выбора мощности двигателя методом эквивалентного момента (см. алгоритм на рисунке 1.1).

В случае длительного режима работы с постоянной нагрузкой (колебаний момента на валу двигателя не более 8% от его среднего значения), что определяется оператором 6, расчет ведем по максимальной нагрузке (оператор 13). При известной скорости двигателя, его мощность определяем по выражению

$$P_{H \text{ ДВ}} \ge M_{C \text{ max}} \cdot \omega_{H \text{ ДВ}}.$$
 (4.1)

Далее переходим к последовательному выполнению операторы 25-32. В случае длительного режима работы с переменной нагрузкой выполняем проверку условий и определения режима работы (операторы 8, 9), ведем расчет эквивалентного момента (оператор 12) по выражению (6.7). Далее выбирают двигатель по мощности (оператор 14)

$$P_{H IIB} \ge K \cdot M_{\ni} \cdot \omega_{H IIB}$$
 (4.2)

где коэффициент К=1,05 - 1,2 учитывает дополнительную нагрузку, создаваемую динамическим моментом.

Проверяем двигатель по критериям (6.8) и (6.11). Далее полезно провести предварительную проверку правильности выбора двигателя путем уточнения нагрузочной диаграммы — операторы (6-2). По уточненной нагрузочной диаграмме проверяем двигатель по нагреву (оператор 22) методом эквивалентного момента или методом средних потерь. В результате окончательно выбираем двигатель (оператор 24) и переходим к последующим расчетам силового электропривода (операторы 26 - 33).

4.2 Предварительный расчет мощности двигателя для повторно-кратковременного режима работы

Если режим работы привода относится к повторно-кратковременному (имеются паузы, время цикла меньше 10 минут), что определяется оператором 8, ориентируемся на использование двигателя номинального режима S3. Следует отметить, что если по какой-либо причине будет выбран двигатель режима S1, например, при $\Pi B_P > 80\%$, то расчет следует

производить по методике, предложенной в предыдущем подразделе, т.е. переходя к выполнению оператора 12.

Отличия в расчете мощности двигателя повторно-кратковременного режима от длительного весьма существенные и обусловлены тем, что для данного режима работы выпускаются специальные двигатели номинального режима S3.

Прежде всего следует определить расчетный эквивалентный момент по формуле

$$M_{\Im} = \sqrt{\frac{\sum_{j=1}^{m} M_{j}^{2} \cdot \Delta t_{j}}{T_{II} - t_{0}}} . \tag{4.3}$$

Затем по нагрузочной диаграмме определяем расчетную продолжительность включения ΠB_P

$$\Pi B_{P} = \frac{T_{II} - t_{0}}{T_{II}} \cdot 100\%. \tag{4.4}$$

Электродвигатели номинального режима S3 выпускаются для определенных стандартных продолжительностей включения ΠB_{CT} , равных 15, 25, 40, 60%. Поэтому после определения ΠB_P следует привести полученное значение M_{P} к ближайшему стандартному ΠB_{CT}

$$M_{\mathcal{F}} = M_{\mathcal{F}} \sqrt{\frac{\Pi B_{P}}{\alpha (\Pi B_{CT} - \Pi B_{P}) + \Pi B_{CT}}},$$
(4.5)

ИЛИ

$$M_{\mathcal{F}} = M_{\mathcal{F}} \sqrt{\frac{\Pi B_{P}}{\Pi B_{CT}}}.$$
(4.6)

Из каталога выбираем двигатель номинального режима S3 с ближайшим принятым стандартом ΠB_{CT} из условия

$$P_{H \text{ ДВ}}(\Pi B_{CT}) \ge K \cdot M_{\mathfrak{I}} \cdot \omega_{H \text{ ДВ}}.$$
 (4.7)

Дальнейшие расчеты производим аналогично, как и в случае длительного режима, начиная с оператора 14.

4.3 Определение допустимого числа включений (рабочих циклов) в час

При цикличном режиме работы, особенно асинхронного двигателя с короткозамкнутым ротором, необходимо выполнить проверочный расчет для определения допустимого числа включений в час

$$Z_{\Pi O \Pi} = 3600 / T_{\Pi}$$
. (4.8)

Для двигателя режима S1 величина $Z_{\text{ДО\Pi}}$ определяется по формуле

$$Z_{\text{ДОП}} = 36 \frac{\Pi B(\Delta P_{\text{H}} - \Delta P) + \beta_0 \cdot \Delta P_{\text{H}} (100 - \Pi B)}{[(1 - \beta_0) \cdot \Delta P_{\text{H}} / 2 - \Delta P](t_{\Pi} + t_{\text{T}}) + \Delta A_{\text{T}} + \Delta A_{\Pi}}, (4.9)$$

где $\Delta P_{H\Pi B_{CT}}$ -мощность тепловых потерь, соответствующая номинальному режиму при $\Pi B_{CT};$

 ΔP_H , ΔP — соответственно, номинальная и реальная (если в установившемся режиме работы двигатель работает с недогрузкой $P < P_H$) мощности потерь;

 ΔA_{Π} , ΔA_{T} — потери энергии при пуске и торможении соответственно, которые для нерегулируемого привода не зависят от типа двигателя и способа пуска и определяют по выражениям (для режима S4 следует принять t_{T} =0, ΔA_{T} =0):

$$\begin{cases} \Delta A_{\Pi} = J(\omega_{0}\omega_{C} - {\omega_{C}}^{2}/2) + M_{C}(\omega_{0}t_{\Pi} - \omega_{C}t_{\Pi}/2); \\ \Delta A_{T}(\text{дин.торм.}) = -J\omega_{C}^{2}/2 - M_{C}\omega_{C}t_{T}/2; \\ \Delta A_{T}(\text{противовкл.}) = J(\omega_{0}\omega_{C} + \omega_{C}^{2}/2) - M_{C}(\omega_{0}t_{T} + \omega_{C}t_{T}/2). \end{cases}$$
(4.10)

Время пуска и торможения на предварительном этапе расчета мощности можно определить приближенно:

$$t_{\Pi} = J\omega_{C} / (M_{\Pi.CP} - M_{C.CP});$$

 $t_{T} = J\omega_{C} / (M_{T.CP} + M_{C.CP}),$
(4.11)

где ω_0 , ω_C — скорость идеального холостого хода и скорость двигателя под нагрузкой рад/с;

J- приведенный к валу двигателя момент инерции привода, кг·м²;

 $M_{\Pi.CP},\ M_{\Pi P}$ – средние значения моментов двигателя при пуске и торможении Нм;

 $M_{C,CP}$ — среднее значение статического момента на валу двигателя при пуске (торможении) — знак момента зависит от вида нагрузки (реактивная или активная).

Для двигателя режима S3 номинальная частота включения Z_{HOM} =6 (T_{II} =10 мин). В этом случае

$$Z_{\text{ДОП}} = 36 \frac{\Delta P_{\text{H}\Pi B_{\text{CT}}} \cdot \Pi B_{\text{CT}}}{\Delta P \cdot t_{P} + \Delta A_{\Pi} + \Delta A_{T}}.$$
(4.12)

Для двигателей, допускающих большую частоту включений, в каталогах приводят значение Z_{HOM} . В этом случае для режима S4 можно принять:

$$Z_{\text{ДОП}} \cong Z_{\text{HOM}} \frac{J_{\text{ДВ}}}{J_{\sum}} \cdot \frac{Z_{\text{HOM}}}{\text{FI}},$$
 (4.13)

где ΠB определяется по (4.4), а для режимов S4, S5 по Γ OCT 183-74 (см. таблицу 2.1), ΠB_{CT} по Γ OCT 183-74 для режима S3.

4.4 Предварительный выбор двигателей для кратковременного режима работы

При кратковременном режиме работы (выполняется условие оператора 9) следует применять двигатели номинального режима S2. Рассмотрим выбор мощности для данного двигателя (выполнение оператора 12).

Методом эквивалентного момента определяем значение $M_{\text{ЭР}}$ формула (4.3). Т.к. двигатели номинального режима S2 с нормированными временами длительности работы, равные 10, 30, 60 и 90 минут, то после определения $M_{\text{ЭР}}$ следует выполнить пересчет момента на стандартное время работы

$$M_{\Im} = M_{\Im P} \sqrt{(\alpha + 1) \frac{1 - e^{-\frac{t_{PH}}{T_{H}}}}{1 - e^{-\frac{t_{P}}{T_{H}}}} - \alpha},$$
 (4.14)

где t_{PH} , t_{P} — соответственно, номинальное (каталожное) и реальное время работы, c;

T_H – постоянное время нагрева двигателя, с;

α – коэффициент потерь, т.е. отношение постоянных потерь к переменным номинальным.

Значения T_H в каталогах не задаются, но их легко определить по каталожным значениям для двигателя режима S2, где обычно задаются номинальные (паспортные) данные для указанных двигателей при использовании их в кратковременном ($P_{H.KP}$, t_{PH} , $\eta_{H.KP}$) и продолжительном ($P_{H.\Pi P}$, $\eta_{H.\Pi P}$) режимах работы

$$T_{H} = \frac{t_{P.H}}{\ln \frac{\Delta P_{H.KP}}{\Delta P_{H.KP} - \Delta P_{H.\Pi P}}},$$
(4.15)

$$\Delta P_{H.KP} = P_{H.KP} \frac{1 - \eta_{H.KP}}{\eta_{H.KP}};$$
 где
$$\Delta P_{H.\Pi P} = P_{H.\Pi P} \frac{1 - \eta_{H.\Pi P}}{\eta_{H.\Pi P}}.$$
 (4.16)

После определения $M_{\mathfrak{Z}}$ определяем требуемую мощность двигателя номинального режима S2

$$P_{HДB}(t_{PH}) \ge M_{\mathfrak{F}} \cdot \omega_{HДB}. \tag{4.17}$$

Для работы в кратковременном режиме могут быть использованы электродвигатели номинального режима S3. При этом, например, для краново-металлургической серии машин полагают, что длительности кратковременной работы, равной 30 мин. соответствует ΠB_{CT} =15%; для 60-минутной работы – ΠB_{CT} =25%; 90-минутной – ΠB_{CT} =40%.

5 Расчет мощности двигателя махового электропривода

Маховиковый электропривод применяют для механизмов, обладающих так называемой ударной (или пульсирующей) нагрузкой (прессы, молоты, поршневые насосы, компрессоры и т.д.). Здесь маховик позволяет снизить пики моментов нагрузки на валу, а также уменьшить неравномерность хода (пульсации скорости).

Рассмотрим работу маховикового электропривода для двух случаев нагрузки – пульсирующей (рисунок 5.1) и прямоугольной формы (рисунок 5.2).

5.1 Расчет мощности двигателя махового электропривода при пульсирующей нагрузке

Здесь маховик позволяет уменьшить («сгладить») пики (амплитуды) статической нагрузки. Из рисунка 5.1 следует

$$M_{C}\!\!=\!\!M_{CP}(1\!+\!\alpha\!\cdot\!\!\sin\!\Omega\!\cdot\!t), \eqno(5.1)$$
 где $\alpha=\frac{M_{B}}{M_{CP}}$; $\Omega=\frac{2\pi}{t_{II}}$.

Условие необходимости применения маховика для привода с пульсирующей нагрузкой имеет вид (если двигатель имеет номинальный момент $M_H = 1,2 M_{CP}$):

$$\left\{ \begin{array}{l} \alpha {>} 0.938 \;\; \text{при любых } \mu; \\ \alpha {<} 0.933 \;\; \text{при } \mu {<} (a+1)/1,2 \,. \end{array} \right. \eqno(5.2)$$

Расчёт привода для механизма с пульсирующей нагрузкой производим в следующем порядке.

5.1.1 Определяем номинальный расчётный момент двигателя из условия

$$M_{\rm H} \ge (1,1-1,3)M_{\rm CP}$$
 (5.3)

и его номинальную мощность

$$P_{HДB} \ge M_H \omega_0$$
 (5.4)

по заранее известной скорости идеального холостого хода (синхронной) ω_0 или номинальной $\omega_{\rm H}$.

Записываем из каталога номинальные параметры двигателя и определяем:

μ - кратность допустимого момента (по (6.9) или (6.10));

 β - жесткость механической характеристики (для асинхронного двигателя принимаем $\beta = \frac{M_H}{\omega_0 \cdot s_H},$ для двигателя постоянного тока -

$$\beta = \frac{(K \cdot \Phi)^2}{R_{\mathcal{A}}}.$$

5.1.2 Определяем требуемую электромеханическую постоянную времени привода:

- по условию перегрузочной способности

$$T_{M\mu} = \frac{1}{\Omega} \sqrt{\left(\frac{M_B}{\mu M_H - M_{CP}}\right)^2 - 1}$$
; (5.5)

- по условию нагрева

$$T_{M\tau} = \frac{1}{\Omega} \sqrt{\left(\frac{M_B^2}{2 \cdot (M_H^2 - M_{CP}^2)}\right) - 1}.$$
 (5.6)

Из двух значений электромеханической постоянной времени привода $T_{M\mu}$ и $T_{M\tau}$ выбирают большее (если получаем значение ≤ 0 , то маховик не нужен).

5.1.3 Далее при известномой β находим момент инерции привода

$$J=T_{\mathbf{M}}\cdot\boldsymbol{\beta}$$
 (5.7)

и момент инерции маховика

$$J_{\text{max}} = (J - J_{\text{ДB}}) \cdot i^2, \tag{5.8}$$

где і – передаточное число между валом двигателя и валом маховика.

5.2. Расчет мощности двигателя махового электропривода при прямоугольном графике нагрузки, состоящем из двух участков.

Для двухучасткового графика нагрузки условие необходимости применения маховика можно приблизительно записать в виде (см. рисунок 5.2):

$$\frac{M_{\text{C max}}}{M_{\text{C.CP.KB}}} > \mu, \tag{5.9}$$

где M_{Cmax} = M_1 - максимальное значение статической нагрузки; $M_{C.CP.KB}$.- среднеквадратичное значение момента нагрузки.

$$M_{\text{C.CP.KB}} = \sqrt{\frac{{M_1}^2 t_1 + {M_0}^2 t_0}{t_1 + t_0}}.$$
 (5.10)

Расчёт привода для механизма с нагрузкой типа двухучасткового графика (рисунок 5.2) производим в следующем порядке:

 $5.2.1~{
m Пo}~$ исходной нагрузочной диаграмме определяем $M_{CP.KB.}~$ и среднее значение M_{CP} за цикл работы по выражению

$$M_{CP} = (M_1 \cdot t_1 + M_0 \cdot t_0) / t_{II}.$$
 (5.11)

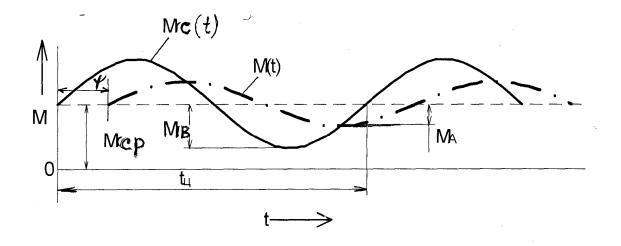


Рисунок 5.1 - График пульсирующей нагрузки на валу двигателя

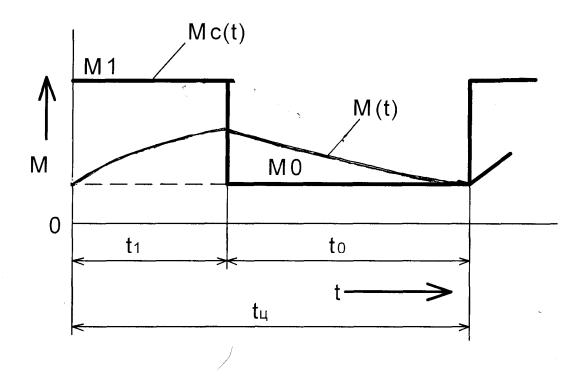


Рисунок 5.2 - График нагрузки механизма ударного действия

5.2.2 Находим расчетный номинальный момент двигателя из условия (5.3) или

$$M_{\rm H} \ge (M_{\rm CP} + M_{\rm CP.KB})/2$$
 (5.12)

и его номинальную мощность по выражению (5.4). Выбираем по каталогу двигатель, имеющий меньшее значение жесткости естественной характеристики β (например, асинхронный двигатель с повышенным скольжением) и, как и в предыдущем случае, определяем значения μ и β .

5.2.3 Определяем значения момента инерции привода:

$$J = \frac{\beta \cdot t_1}{\ln \frac{M_1 - M_0}{M_1 - \mu \cdot M_H}}$$
 (5.13)

и момент инерции маховика по формуле (5.8). Затем переходим к последующим расчетам, начиная с оператора 26 (рисунок 1.1).

6 Особенность расчета мощности следящего привода

Основой для расчета мощности двигателя, как рассмотрено ранее, является нагрузочная диаграмма электропривода. Однако для следящего электропривода построить ее, как правило, не представляется возможным, т. к. слежение происходит по случайному закону, который нельзя предвидеть. Поэтому задача выбора мощности двигателя для следящего привода по критерию нагрева в общем виде нерешаема, и для каждого конкретного случая необходимо находить какой-либо частный случай решения.

В общем случае можно предложить расчет мощности и выбор конкретного двигателя, исходя из желаемых (допускаемых) перегрузок и минимизации потерь и времени обработки перемещений, что предполагает определение оптимального передаточного отношения (подробнее рассмотрено в [9].

Считая, что основной нагрузкой механизма (следящие системы, манипуляторы и т. п.) является динамическая нагрузка, то минимальная мощность двигателя при выбранном оптимальном передаточном отношении i_{OPT} [9] может быть рассчитана по выражению:

$$P_{H} = \kappa_{3} \left(\frac{M_{M}}{i_{opt}} + \frac{2J_{M} \cdot \varepsilon_{max}}{\mu \cdot i_{opt}^{2}} \right) \cdot \frac{\omega_{H}}{\eta}, \tag{6.1}$$

где M_M - статический момент на валу механизма, Нм;

 J_{M} - момент инерции механизма, кг·м 2 ;

 ϵ_{max} - максимальное (предельное) угловое ускорение механизма, pag/c²;

μ - перегрузочная способность двигателя;

 κ_3 - коэффициент запаса по мощности (выбирается в зависимости от требований к каждому конкретному механизму и проектируемому электроприводу, κ_3 =1,5-2,5);

 ω_H - номинальная скорость двигателя, рад/с;

 ω_{max} - максимальная скорость механизма, рад/с;

 η =- КПД механической передачи.

С некоторым приближением мощность двигателя может быть определена исходя из гармонического режима работы следящего привода

$$P_{H} = \frac{\omega_{\text{max}}}{2 \cdot \eta} \sqrt{a_{1}(a_{1} + J_{M} \cdot \varepsilon_{\text{max}})}, \tag{6.2}$$

где
$$a_1 = \sqrt{4 \cdot M_M^2 + J_M^2 \cdot \varepsilon_{\text{max}}^2}$$
 (6.3)

Выражение (6.1) справедливо для оптимального передаточного отношения редуктора:

$$i_{\text{opt}} = 4 \sqrt{\frac{J_{\text{M}}^2 \cdot \varepsilon_{\text{max}}^2 + 4 \cdot M_{\text{M}}^2}{J_{\text{JB}}^2 \cdot \varepsilon_{\text{max}}^2 \cdot \eta^2}} \cong \sqrt{\frac{J_{\text{M}}}{J_{\text{JB}}}}.$$
 (6.4)

После определения мощности и выбора двигателя, необходимо определить фактическое передаточное отношение редуктора

$$i_{\Phi} = \omega_{H} / \omega_{\text{max}}. \tag{6.5}$$

Если i_{Φ} незначительно отличается от i_{opt} , то выбранный двигатель можно считать удовлетворяющим поставленным требованиям при фактическом передаточном числе редуктора. Если же i_{Φ} отличается от i_{opt} более, чем на 30%, то следует выбрать другой двигатель или, если допускают условия работы, оставив выбранный двигатель, изменить максимальное значение скорости и ускорения выходного вала.

Расчет мощности двигателя следящих приводов с оптимальным быстродействием следует дополнить определением и реализацией предельных нагрузочных характеристик привода, которые ограничены, наряду с возможностями системы автоматического управления, предельными параметрами исполнительного двигателя, а именно, максимальным моментом $M_{\text{Дmax}}$, максимальной скоростью $\omega_{\text{Д max}}$.

7 Выбор электродвигателей по роду тока, климатическому исполнению, специальным требованиям рабочих машин

7.1 Выбор электродвигателей по роду тока

Рекомендуется двигатели постоянного тока применять лишь в тех случаях, когда двигатели переменного тока не обеспечивают требуемых характеристик механизма (рабочей машины), либо приводы на их основе не экономичны. При этом для механизмов с продолжительным режимом работы, с редкими включениями и малыми нагрузками при пуске наиболее целесообразен синхронный двигатель. Применение синхронных двигателей позволяет обеспечить высокие энергетические показатели в процессе эксплуатации.

Что касается напряжения, то двигатели постоянного тока общепромышленной серии (4П, 2П) изготавливаются на одно или два номинальных напряжения каждый, асинхронные (АИ, 4А) — на одно или два напряжения каждый, синхронные — на одно напряжение. При этом двигатели должны обеспечить выдачу номинальной мощности при отклонении напряжения источника от номинального в диапазоне, установленном стандартом ТУ на соответствующие двигатели. Особенно последнее условие важно при выборе двигателей, работающих в автономных сетях, где их нагрузка соизмерима с мощностью сети.

7.2 Выбор электродвигателей по конструктивному исполнению

При выборе конструктивного исполнения двигателя необходимо учитывать условия его эксплуатации, под которыми следует понимать в первую очередь воздействие климатических факторов окружающей среды, защиту от воздействия окружающей среды, а также способ охлаждения и исполнения двигателей по способу монтажа.

7.2.1 Климатическое категория исполнение И размещения. Климатическое исполнение категория размещения, указанные (или эксплуатационной документации), маркировке должны соответствовать климатическим факторам внешней среды согласно ГОСТ 15150-69 и ГОСТ 15543-70 (таблица 7.1).

В наружных установках должно применяться оборудование категории размещения 1 или 2; в последнем случае оно должно устанавливаться под навесом, защищающем его от прямого воздействия солнечной радиации и атмосферных осадков.

Для эксплуатации в закрытых помещениях – категории 3 и 4; в последнем случае с искусственно регулируемыми климатическими условиями.

По климатическому исполнению электрооборудование выбирается для макроклиматических районов (см. таблицу 7.1).

Таблица 7.1 - Исполнение изделий для различных климатических исполнений и размещение (категория изделий) (для изделий, предназначенных для эксплуатации в районах, кроме морского климата)

А. Климатическое исполнение по ГОСТ 15543-70							
		іматическое исполнение по г ОСТ 13343-70					
•	венное						
	начение	Исполнение для макроклиматических					
Русские		районов					
3.7	e						
У	N	С умеренным климатом					
УХЛ	NF	С умеренным и холодным климатом					
TB	TH	С влажным тропическим климатом					
TC	TA	С сухим тропическим климатом					
T	T	Тропическое как с сухим, так и влажным климатом					
О	U	Общеклиматическое исполнение на суше, кроме с очень					
		холодным климатом					
	В. Место раз	змещения при эксплуатации (категория изделия)					
Обозна	Место размещения в эксплуатации						
чение		·					
1	-	м воздухе (прямое солнечное излучение, атмосферные					
	осадки)						
2		и; в помещениях, где колебания температуры и влажности					
	-	существенно отличаются от колебаний на открытом					
	<u> </u>	оболочке комплектного изделия категории 1 (отсутствие					
2		нечного излучения и атмосферных осадков)					
3	-	помещениях (объемах) без искусственно регулируемых					
		ких условий (существенное уменьшение воздействия					
		радиации, ветра, атмосферных осадков, песка, пыли;					
1	отсутствие р	,					
4	В помещениях (объемах) с искусственно регулируемыми						
	климатическими условиями (отсутствие воздействий прямого						
		излучения, ветра, атмосферных осадков, песка, пыли,					
	наружного воздуха; отсутствие или уменьшение воздействия						
	рассеянного солнечного излучения, конденсации влаги)						
5	В помещениях (объемах) с повышенной влажностью (длительное						
наличие воды или частая конденсация влаги на стенах и потолке)							

Примечания

- 1 Если основным назначением изделия является эксплуатация в районе с холодным климатом, экономически нецелесообразно его использование вне пределов этого района, вместо УХЛ рекомендуется обозначение ХЛ (F).
- 2 ГОСТ 15543-70 конкретизирует ГОСТ 15150-69 применительно к электротехническим изделиям.
- 3 Сочетание климатического исполнения и категории размещения называют видом климатического исполнения: УХЛ1, У3 и т.д.

Степень защиты оболочки электрооборудования от воздействия окружающей среды должна соответствовать требованиям ПУЭ для конкретной установки. Допускается применение электрооборудования с более высокой степенью защиты оболочки. Краткое описание степеней защиты оболочек по ГОСТ 14254-80* приведено в таблице 7.2.

Таблица 7.2 - Степени защиты оболочек электрооборудования по ГОСТ14254-80*

Степень защиты персонала		Степень защиты от проникновения воды
от соприкосновения с		внутрь оболочки (вторая цифра)
токоведущими и		
вращающимися частями и		
попадания твёрдых тел		
внутрь оболочки (первая		
цифра)		
0 Защита отсутствует	0	Защита отсутствует
1 Защита от твёрдых тел	1	Защита от капель воды, вертикально
размером более 50 мм		падающих
2 Защита от	2	Защита от капель воды, при наклоне
проникновения		оболочки до 15°
твёрдых тел размером		
более 12 мм		
3 Защита от твёрдых тел	3	Защита от дождя
размером более 2,5 мм		
4 Защита от	4	Защита от брызг
проникновения		
твёрдых тел размером		
более 1 мм		
5 Защита от пыли	5	Защита от водяных струй
(проникающая пыль	6	Защита от волн воды
не нарушает работу		
изделия)		
6 Пыленепроницаемое	7	Защита при погружении в воду (на
(проникновение пыли		определённое время)
предотвращено	8	Защита при длительном погружении в
полностью)		воду
		изделия указывается степень защиты одной
цифрой, то пропущенная ци	фра	заменяется буквой X, например, IP3X.

Факторы внешнего механического воздействия на электротехнические изделия определены ГОСТ 17516-72.

В таблице 7.3 даны рекомендации выбора электродвигателей для различных условий их эксплуатации.

Таблица 7.3 – Выбор исполнения двигателей в зависимости от

условий эксплуатации

y constitution of the state of		
Условия эксплуатации	Исполнение	Условное
	электродвигателя	обозначение
Сухие помещения без пыли,	Открытое	IP00, IP01
грязи, едких газов	Защищенное	IP10-IP23
	самовентилируемое	
Помещение пыльное, влажное	Закрытое	IP43-IP56
	самовентилируемое	
Помещение с высокой	Закрытое с незави-	IP43-IP56
температурой;	симой вентиляцией	
глубокорегулируемые приводы		
На открытом воздухе	Защищенное	IP10-IP23
	Закрытое	IP43-IP56
Взрывоопасная среда (в зави-	Взрывозащищенное	-
симости от класса зоны)	Закрытое	IP44-IP54

7.2.2 Исполнение двигателей по способу монтажа. При выборе двигателя по способу монтажа необходимо, чтобы его рабочее положение (горизонтальное, вертикальное, наклонное), способ крепления (к фундаменту, к производственному механизму, встраиваемые и т. д.), исполнение выходного концов вала и их количество соответствовали одному из конструктивных исполнений, приведенных в ГОСТ 2279-79 [10].

Условное обозначение состоит из двух букв латинского алфавита IM и четырех цифр

IM
$$\frac{XXXX}{1234}$$
.

Для конструктивных исполнений, предусмотренных ГОСТ 2479-79, но не входящих в СТ СЭВ 246-76 и публикацию МЭК 34-7, установлено условное обозначение одной буквой М и теми же цифрами.

Стандарт устанавливает следующие условные обозначения. Первая цифра — конструктивное исполнение:

- 1 на лапах с подшипниковыми щитами (с пристроенным редуктором);
- 2 на лапах с подшипниковыми щитами, с фланцем на подшипниковом щите (или щитах);
- 3 без лап с подшипниковыми щитами, с фланцем на одном подшипниковом щите (или щитах), с цокольным фланцем;
 - 4 без лап с подшипниковыми щитами, с фланцем на станине;
 - 5 без подшипниковых щитов;
- 6 на лапах с подшипниковыми щитами и со стояковыми подшипниками;

- 7 на лапах со стояковыми подшипниками (без подшипниковых щитов);
 - 8 с вертикальным валом, кроме групп от IM1 до IM4;
 - 9 специального исполнения по способу монтажа.

Вторая и третья цифры — способы монтажа (пространственное положение машины) и направление конца вала, причем в обозначении направления конца вала (3-я цифра) цифра 8 обозначает, что машина может работать при любом из направлений конца вала, определенных цифрами 8 — 7, а цифра 9 указывает, что направление конца вала машины отлично от определенных цифрами от 0 до 8. В этом случае направление конца вала указывается дополнительно в технической документации.

Четвертая цифра обозначает исполнение конца вала электрической машины:

- 0 без конца вала;
- 1 с одним цилиндрическим концом вала;
- 2 с двумя цилиндрическими концами вала;
- 3 с одним коническим концом вала;
- 4 с двумя коническими концами вала;
- 5 с одним фланцевым концом вала;
- 6 с двумя фланцевыми концами вала;
- 7 с фланцевым концом вала на стороне D и цилиндрическим концом вала на стороне N, причем, под стороной D понимается: при одном конце вала для двигателей приводная, а для генераторов приводимая сторона; при двух концах вала сторона с концом вала большего размера, а при равных диаметрах для машин на лапах с коробкой выводов, расположенных не сверху, сторона, с которой коробка выводов видна справа;
- 8 прочие исполнения конца вала. Примеры условных обозначений конструктивных исполнений электрических машин приведены в таблице 7.6.

7.3 Выбор серий электродвигателей и их модификаций

При выборе электродвигателей следует учитывать ряд дополнительных соображений. Все электрические машины подразделяются на две группы: общего назначения (общепромышленные) и специальные. Кроме того, в зависимости от характера нагрузки и других специфических требований, электродвигатели можно также разделить на две группы: 1) двигатели, предназначенные для привода механизмов длительного режима работы с относительно мало изменяющейся нагрузкой или без особо жестких требований к динамическим характеристикам; 2) двигатели, обеспечивающие работу механизмов преимущественно в динамических режимах.

Таблица 7.4 – Примеры условного обозначения форм конструктивного исполнения электрических машин по способу монтажа

Группа исполнения	Конструктивное исполнение	Обозначение
IM1 Машины на лапах с под- шипниковыми щитами	С двумя подшипниковыми щитами, на лапах, вал горизонтальный с цилиндрическим концом	IM1001
	То же, вал вертикальный с цилиндри- ческим концом, направленным вниз	IM1011
IM2 Машины на лапах с под- шипниковыми щитами с фланцем на подшипнико- вом щите (или щитах)	На лапах, с фланцем на одном под- шипниковом щите, доступным с обрат- ной стороны, вал горизонтальный с ци- линдрическим концом	IM2001
	На лапах, с фланцем на одном подшипниковом щите, не доступным с обратной стороны, вал вертикальный с цилиндрическим концом, направленным вверх	IM2131
IM3 Машины без лап, с под- шипниковыми щитами, с фланцем на одном под- шипниковом щите (или	С двумя подшипниковыми щитами, с фланцем та стороне D , доступным с обратной стороны, вал горизонтальный с цилиндрическим концом	IM3001
щитах)	С двумя подшипниковыми щитами, с фланцами, доступными с обратной стороны на обоих подшипниковых щитах, вал вертикальный с цилиндрическими концами	M3912
IM4 Машины без лап с флан- цем на станине	С двумя подшипниковыми щитами, с фланцем на стороне D, доступным с обратной стороны, вал горизонтальный с цилиндрическим концом	IM4001
	С одним подшипниковым щитом, с фланцем на стороне N, доступным с обратной стороны; вал вертикальный с цилиндрическим концом, направленным вверх	M4731
IM5 Машины без подшипнико- вых щитов	Без станины с ротором и горизонтальным валом с цилиндрическим концом	IM5001

Окончание таблицы 7.4

Группа исполнения	Конструктивное исполнение	Обозначение
IM5 Машины без подшипнико- вых шитов	Со станиной на лапах, с ротором, без вала	IM5410
IM6 Машины с подшипниковы- ми щитами и стояковыми подшипниками	На лапах с двумя подшипниковыми щитами, с одним стояковым подшипником на стороне D , без фундаментальной плиты	IM6000
	Со станиной на лапах с фундаментной плитой, с одним стояковым подшипником на стороне N, с одним подшипниковым щитом	IM6211
IM7 Машины со стояковыми подшипниками (без подшипниковых щитов)	Без фундаментной или опорной плиты, станина на лапах, с одним стояковым подшипником	IM7001
	С фундаментной плитой на приподнятых лапах, с двумя стояковыми подшипни- ками	M7610
IM8 Машины с вертикальным валом, кроме машин групп от IM1 до IM4	С подпятником и направляющим подшипником, расположенными под ротором, с валом, без маховика	IM8201
	С подпятником и направляющим под- шипником, расположенными над рото- ром, с валом, без маховика	IM8411
IM9 Машины специального ис- полнения по способу мон- тажа	Встраиваемое исполнение с цилиндрической станиной (или без станины), с двумя подшипниковыми щитами, вал горизонтальный с цилиндрическим концом	IM9001
	С двумя подшипниковыми щитами на лапах в горизонтальной плоскости, вал вертикальный с цилиндрическим концом	M9631

Вторая группа двигателей предназначена для механизмов с частыми пусками, реверсами, большой частотой включений в час. Это - механизмы кратковременного и повторно-кратковременного режимов работы: подъемники, лебедки, краны, лифты, манипуляторы роботов, прокатные станы, экскаваторы и т п. Для этих двигателей характерны повышенная перегрузочная способность, высокая частота включений в час.

Рекомендации по выбору серии двигателей для конкретных машин и механизмов приведены в таблице 7.5.

Следует обратить внимание на выбор модификации выбранной общепромышленной серии электродвигателей с учетом специфических проектируемого электропривода. Например, модификации электродвигателей серии 4А приведены в таблице 7.6. Выбор модификации серии для проектируемого механизма однозначно определяется названием модификации. Аналогично можно указать на выбор модификаций асинхронных двигателей серии АИ, в которой имеется специализированная модификация – взрывозащищенное исполнение (обозначение АИМ). Кроме того, следует учитывать требования по монтажу электродвигателя на рабочей машине (дополнительно к способу монтажа, рассмотренному ниже). Так, серия асинхронных машин АИ предусматривает два варианта установочных размеров: согласно стандартам СЭВ (РС 3031) - обозначение АИР и Европейской CENELEC – обозначение АИС.

Подобные соображения следует учитывать и при выборе модификаций общепромышленной серии машин постоянного тока. В таблице 7.7 приведены модификации и их характеристики двигателей постоянного тока серии 4П.

Таблица 7.5 – Электрические, конструктивные модификации и специализированные исполнения асинхронных двигателей

серии 4А и область их применения

Назначение,		одификаци	Я	Специа-
рекомендуемая область	Электри-	Конст-	По ус-	лизирова
применения, условия	ческая	руктив-	ЛОВИЯМ	нные
эксплуатации		ная	окр.	
			среды	
			1 ' '	
1	2	3	4	5
С повышенным пусковым	4AP			
моментом.				
Привод механизмов, имею-				
щих большие статические				
и инерционные нагрузки в				
момент пуска				
С повышенным	4AC			
номинальным				
скольжением. Режим S2 и				
S6.Возможно				
использование в режимах				
S2и S4.				
Привод механизмов с				
пульсирующей нагрузкой,				
маховиковый				
электропривод				
Многоскоростные.	Число			
Привод механизмов,	полюсов:			
требующих ступенчатого	4/2; 8/4;			
регулирования скорости	6/4; 8/16;			
(две, три или четыре	12/6;			
скорости)	6/4/2;			
	8/6/4;			
	12/8/6/4	4		
С фазным ротором.		4AK		
Приводы механизмов с		(IP44)		
особо тяжелыми		4AHK		
условиями пуска. Приводы		(IP23)		
механизмов, требующих				
ограничения ускорения и				
(или) реостатного				
регулирования скорости				
(кроме кранов)				

Продолжение таблицы 7.5

Продолжение таблицы 7.5				<u> </u>
1	2	3	4	5
Малошумные.		4AH		
Привод механизмов с				
повышенными				
требованиями к уровню				
шума (третий класс по ГОСТ				
16372-77)				
Со встроенным электро-		4AE		
магнитным тормозом.				
Режим S4.				
Привод механизмов,				
работающих в повторно-				
кратковременном режиме, с				
частыми пусками под				
нагрузкой с точной				
фиксацией останова после				
отключения от сети				
Встраиваемые.		4AB		
Силовые модули без				
промежуточной передачи				
(редуктора). Имеют те же				
модификации, что и				
основное исполнение				
Со встроенной температур-		4АБ		
ной защитой.				
Привод механизмов с				
тяжелыми условиями экс-				
плуатации; ответственные				
механизмы				
Для моноблочных центро-		4АЖ		
бежных насосов.				
Режим S1				
Тропического исполнения			4AT	
для приводов, эксплуа-				
тируемых в условиях сухого				
и влажного тропического				
климата				
Химостойкие.			4AX	
Приводы механизмов,				
работающих в химически				
активной невзрывоопасной				
среде				

Продолжение таблицы 7.5

продолжение таолицы 7.5		2	1	_
	2	3	4	5
Сельскохозяйственного			4AC	
назначения.			(4ACX)	
Механизмы предприятий				
сельского хозяйства (в т. ч.				
химостойкое исполнение)				
Влагоморозостойкие.			4АХЛ	
Привод механизмов, рабо-				
тающих при температуре				
окружающей среды до				
-40 0 С и относительной				
влаго-стойкостью до 100%				
при +25°C				
Рудничные нормальные.			4APH	
Приводы механизмов,				
работающих в подземных				
выработках, карьерах на				
обогатительных фабриках в				
условиях невзрывоопасной				
окружающей среды				
Пылезащищенные.			4АУП	
Приводы механизмов, рабо-				
тающих в условиях невзры-				
воопасной среды с				
повышенным содержанием				
пыли				
Судовые (имеют электри-			4AOM	
ческие модификации).				
Приводы вспомогательных				
механизмов на речных и				
морских судах				
Высокоточные. Режим S1.				4АП2
Приводы высокоточных				
металлургических станков				
Лифтовые. Режим S3.				4АНЛ
Приводы лифтов.				
Частотно-регулируемые.				4АБ2П
Приводы подач и главного				111,,,11411
движения металлорежущих				
станков и других				
механизмов, с частотным				
-				
регулированием.				

Окончание таблицы 7.5

	1		2	3	4	5
Для	привода	деревооб-				4АХД
рабатывающих станков						

Примечания

- 1 В условном обозначении модификаций (кроме электрической) буквы ставят после цифры, указывающей число полюсов, например, 4A132M8П2 (в таблице обозначено 4A...П2).
- 2 Имеется улучшенная серия машин 4AM, являющаяся модификацией двигателей серии 4A. Структура серии 4AM (наличие модификаций и специализированных исполнений) аналогична структуре серии 4A.

Таблица 7.6 – Выбор серий электродвигателей для типовых машин и механизмов

механизмов			
Характеристика машины,	Серия двигателя		
механизма	Асинхронные	Постоянного	Синхронные
		тока	
1	2	3	4
Механизмы длительного	АИ, 2АИ, 4А,	4П, 2П, П	СДН, СДН3,
режима работы с	A2, A4, AK4,		СДК,
неизменной (практически	АДО		СДКП,
мало изменяющейся)			СДКЗ, СТД,
нагрузкой: насосы,			СДМ
вентиляторы, компрес-			
соры, воздуходувки,			
транспортеры, дробилки,			
сушилки, цементные			
печи, экструдеры и т. п.			
Общепромышленные	АИ, 4А, А2	4П, 2П,	
механизмы, исполни-		ПБС, ПС	
тельные приводы			
(исключая специального			
назначения), кузнечно-			
прессовое оборудование,			
механизмы главного			
движения			
металлорежущих станков			

Продолжение таблицы 7.6

продолжение таолицы 7.6	1		
1	2	3	4
Краны, лебедки, подъемники,	4MTF,	Д, ДП	
вспомогательные механизмы	4MTKF,4MTH,		
прокатного производства,	4MTKH, MTF,		
общепромышленные механи-	MTKF, MTH,		
змы с частыми пусками, тор-	MTKH		
можением, реверсом, боль-			
шой частотой включения в			
час			
Рольганги	AP, 2AP	ДС, ДП	
Приводы валков рабочих			
клетей прокатных станов:			
до 200 кВт;	4А, АИ	4П, 2П	
свыше 200кВт		МП, 2МП,	
		Π , 2Π , $\Pi\Pi$,	
		ПБК, 2ПБ	
Тяговый электропривод		ДК	
городского транспорта		, ,	
Аккумуляторные подъемно-		3ДТ, 4ДТ,	
транспортные машины		ДК, ДКВ,	
		PT	
Экскаваторы		МПЭ, ДЭ,	СДЭ2
1		МПВЭ,	, ,
		дпэ	
Судовые механизмы	МАП	ДПМ	
Промышленные роботы и		ДП, ДР,	
гибкие производственные		ПЯ-250Ф,	
системы; механизмы точного		ДПУ	
и динамичного управления		, ,	
клапанами, вентилями пнев-			
мо-гидравлических систем			
Приводы подач роботов и		ДВУ,	
манипуляторов (вентильные)		2ДВУ	
Приводы подач		ДК1, ПБВ,	
металлорежущих станков		2ПБВ	
(высокомоментные)			
Взрывозащищенные	К, КО, АИМ,		СТДП,
электроустановки	BAO, BAO2,		СДКП2
	B, BP, 2B,		r 1
	2BP, BAO3,		
	BACO,		
	BACO2,		
	4A3MB, АТД		
	, тід		

Окончание таблицы 7.6

1		2	3	4
Рудничное	электрообо-	MA36, MA37,	ДРТ, ЭТ,	
рудование	(подземные,	MTK93,	ЭДР,	
опасные по метану)		MTA93, ABK,	ДПТР, ДК	
		АВТ, ЭДК,		
		ЭКВ, ВРМ,		
		ВРП		

Таблица 7.7 – Модификация машин серии 4П

Таолица /.	Таолица 7.7 – Модификация машин серии 411				
Модификация	Степень	Способ	Характеристика, область		
(тип)	защиты	охлаждения	применения		
4ПО	IP44	ICO141	Закрытый обдуваемый, с		
			нормальным регулированием в		
			диапазоне 1:5. Допускают		
			регулирование скорости вниз от		
			номинальной в диапазоне 1:1000		
			напряжением на якоре со		
			снижением допустимого тока		
			якоря до 50%		
4ПФ	IP23	ICO6,	Широкорегулируемые с		
		ICO5	принудительной вентиляцией.		
			Диапазон регулирования 1:1000.		
			Для приводов механизмов		
			главного движения станков с		
			ЧПУ, гибких производственных		
			систем и роботизированных		
			производственных комплексов.		
			Режим S1		
4ПБ	IP44	ICO041	Закрытый с естественной		
			вентиляцией.		
			Нормальное регулирование в		
			диапазоне 1:5 (допускается		
			диапазон до 1:1000).		
			Режим S1 (допускается		
			эксплуатация в режимах S3-S8)		

8 ОКОНЧАТЕЛЬНАЯ ПРОВЕРКА ДВИГАТЕЛЯ ПО НАГРЕВУ

Как уже неоднократно отмечалось, предварительно выбранный двигатель требует его проверки по нагреву. Это объясняется приблизительной оценкой его нагрева по упрощенным нагрузочным диаграммам.

Для более точной оценки нагрева двигателя следует рассчитать и построить его нагрузочную диаграмму за цикл работы. Эта задача решается при выполнении операторов 26 – 29 (рисунок 1.1), т.е. в конечном итоге при расчете переходных процессов с учетом как механической, так и электромагнитной инерции.

Проверку двигателя по нагреву следует выполнять методом средних потерь, или, после дополнительного обоснования, одним из методов эквивалентных величин. При этом следует учитывать особенности расчета средних потерь и эквивалентных величин за цикл работы в зависимости от режима работы привода номинальных режимов работы выбранных двигателей, как это проанализировано ранее для этапа предварительного выбора двигателя.

Список литературы

- 1 Ковчин С.А. Теория электропривода: Учебник для вузов /С.А. Ковчин, Ю.А. Сабинин. СПб.:Энергоатомиздат, 2000.- 496 с.: ил.
- 2 Ключев В.И. Теория электропривода: Учебник для вузов.-М.: Энергоатомиздат, 1985.-560с.: ил.
- 3 Справочник по автоматизированному электроприводу/ Под ред. В.А. Елисеева, А.Б. Шинянского.- М.: Энергоатомиздат, 1983.- 616 с.: ил.
- 4 Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами/ Под ред. В.И. Круповича, Ю.Г. Барыбина, М.Л. Самовера.- 3-е изд., перераб. и доп.- М.: Энергоиздат, 1982.- 416 с.: ил.
- 5 Вешеневский С.Н. Характеристики двигателей в электроприводе. М.: Энергия, 1977.- 432 с.
- 6 Справочник по электрическим машинам /Под общ. ред. И.П. Копылова, Б.К. Клокова М.: Энергоатомиздат, 1988.- Т.1-2.
- 7 Шёнфельд Р. Автоматизированные электроприводы: Пер. с нем. Р. Шёнфельд, Э. Хабигер; Под ред. А. Борцова. Л.: Энергоатомиздат, 1955.- 464 с.
- 8 Ильинский М.Ф. Энергосберегательная технология электроснабжения народного хозяйства. Т.2 Энергосбережение в электроприводе. – М.: Высш. шк., 1989.- 127с.: ил.
- 9 Слука М.П. Теория электропривода. Методические указания. Ч.1 /М.П.Слука, Г.С. Леневский, Л.Г. Черная.-Могилев: МГТУ, 2002.- 48 с.
- 10. Справочник по электрическим машинам: Т.1 /Под общ. ред. И.П. Копылова, Б.К. Клокова.- М.: Энергоатомиздат, 1988.- 456 с.: ил.